diff --git a/scripts/application_packager/convert_to_onnx.py b/scripts/application_packager/convert_to_onnx.py index 68dcb75..c99a265 100644 --- a/scripts/application_packager/convert_to_onnx.py +++ b/scripts/application_packager/convert_to_onnx.py @@ -12,8 +12,8 @@ def convert_to_onnx(ckpt_path: str, fp16: bool = False) -> None: Convert a PyTorch model to ONNX format. Parameters: - output_path (str): The path to save the converted ONNX model. - fp16 (bool): 16 float point percision + ckpt_path (str): The path to save the converted ONNX model. + fp16 (bool): 16 float point precision """ settings = get_app_settings() @@ -68,8 +68,6 @@ def convert_to_onnx(ckpt_path: str, fp16: bool = False) -> None: if __name__ == "__main__": - settings = get_app_settings() - model_checkpoint = "inference_recognition_model.ckpt" print("Converting to ONNX...") diff --git a/scripts/application_packager/profile_onnx.py b/scripts/application_packager/profile_onnx.py index 3bcfb76..8ef12ed 100644 --- a/scripts/application_packager/profile_onnx.py +++ b/scripts/application_packager/profile_onnx.py @@ -5,8 +5,6 @@ import time import numpy as np import onnxruntime as ort -from helpers.app_settings import get_app_settings - def profile_onnx_model( path_to_onnx: str, num_runs: int = 100, warmup_runs: int = 5 @@ -86,6 +84,5 @@ def profile_onnx_model( if __name__ == "__main__": - settings = get_app_settings() output_path = os.path.join("onnx_files", "inference_recognition_model.onnx") profile_onnx_model(output_path) diff --git a/scripts/dataset_manager/produce_dataset.py b/scripts/dataset_manager/produce_dataset.py index 54fb3c8..55207d9 100644 --- a/scripts/dataset_manager/produce_dataset.py +++ b/scripts/dataset_manager/produce_dataset.py @@ -50,8 +50,6 @@ def write_hdf5_file(records: List, output_path: str, dataset_name: str = "data") ) first_rec, _ = records[0] # records[0] is a tuple of (data, md) - sample = first_rec - shape, dtype = sample.shape, sample.dtype with h5py.File(output_path, "w") as hf: data_arr = np.stack([rec[0] for rec in records]) diff --git a/scripts/model_builder/mobilenetv3.py b/scripts/model_builder/mobilenetv3.py index 125ae69..9de7f27 100644 --- a/scripts/model_builder/mobilenetv3.py +++ b/scripts/model_builder/mobilenetv3.py @@ -24,11 +24,9 @@ class SqueezeExcite(nn.Module): def __init__( self, in_chs, - se_ratio=0.25, reduced_base_chs=None, act_layer=nn.SiLU, gate_fn=torch.sigmoid, - divisor=1, **_, ): super(SqueezeExcite, self).__init__() @@ -77,13 +75,6 @@ class GBN(torch.nn.Module): self.act = act def forward(self, x): - # chunks = x.chunk(int(np.ceil(x.shape[0] / self.virtual_batch_size)), 0) - # res = [self.bn(x_) for x_ in chunks] - # return self.drop(self.act(torch.cat(res, dim=0))) - # x = self.bn(x) - # x = self.act(x) - # x = self.drop(x) - # return x return self.drop(self.act(self.bn(x))) diff --git a/scripts/model_builder/plot_data.py b/scripts/model_builder/plot_data.py index 11e851e..7016558 100644 --- a/scripts/model_builder/plot_data.py +++ b/scripts/model_builder/plot_data.py @@ -142,5 +142,4 @@ def plot_confusion_matrix_with_counts( if __name__ == "__main__": settings = get_app_settings() - ckpt_path = os.path.join("checkpoint_files", "inference_recognition_model.ckpt") - evaluate_checkpoint(ckpt_path) + evaluate_checkpoint(os.path.join("checkpoint_files", "inference_recognition_model.ckpt"))